Search results

The evolution of population genetic and phylogeographic structure

Satellite image of the Sonoran DesertWe have combined traditional population genetic approaches with coalescent and graphical modeling techniques to gain insight into how deep-time geological and shallow-time climatic changes have influenced species distributions and the spatial organization of genetic variation. Mexico’s Baja California Peninsula is for us a model landscape in which to study large-scale patterns of spatial genetic structure. Read more about The evolution of population genetic and phylogeographic structure

Conservation genetics of epiphytic and terrestrial orchids

Photograph of Laelia rubescens (an orchid)We have used terrestrial and epiphytic orchids as model systems to investigate the processes influencing the evolution of fine-scale, spatial genetic structure within populations and how this structure may be altered by various factors, including human-mediated disturbance. Read more about Conservation genetics of epiphytic and terrestrial orchids

Graphical population genetics - the geometry of genetic structure

Graph of Sonoran Desert columnar cactus Pachycereus schottiiIn collaboration with Rodney Dyer (Virginia Commonwealth U.) we have developed population graphs, a novel network-based procedure for quantifying patterns of inter-population gene flow (Dyer & Nason 2004; Dyer et al. 2010). While most population geneticists recognize that gene flow is probably best represented in the form of interacting networks of populations, in boiling down this complexity to one or a few summary statistics (e.g., Fst) most of our analytical procedures fail to capture the spatially-explicit connectivity among populations that we are often most interested in. Read more about Graphical population genetics - the geometry of genetic structure